skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akers, Chris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It has been shown that entropy differences between certain states of perturbative quantum gravity can be computed without specifying an ultraviolet completion. This is analogous to the situation in classical statistical mechanics, where entropy differences are defined but absolute entropy is not. Unlike in classical statistical mechanics, however, the entropy differences computed in perturbative quantum gravity do not have a clear physical interpretation. Here we construct a family of perturbative black hole states for which the entropy difference can be interpreted as a relative counting of states. Conceptually, this Letter begins with the algebra of mass fluctuations around a fixed black hole background, and points out that while this is a type I algebra, it is not a factor and therefore has no canonical definition of entropy. As in previous work, coupling the mass fluctuations to quantum matter embeds the mass algebra within a type II factor, in which entropy differences (but not absolute entropies) are well defined. It is then shown that for microcanonical wave functions of mass fluctuation, the type II entropy difference equals the logarithm of the dimension of the extra Hilbert space that is needed to map one microcanonical window to another using gauge-invariant unitaries. The Letter closes with comments on type II entropy difference in a more general class of states, where the von Neumann entropy difference does not have a physical interpretation, but “one-shot” entropy differences do. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Conventional holographic tensor networks can be described as toy holographic maps constructed from many small linear maps acting in a spatially local way, all connected together with “background entanglement”, i.e. links of a fixed state, often the maximally entangled state. However, these constructions fall short of modeling real holographic maps. One reason is that their “areas” are trivial, taking the same value for all states, unlike in gravity where the geometry is dynamical. Recently, new constructions have ameliorated this issue by adding degrees of freedom that “live on the links”. This makes areas non-trivial, equal to the background entanglement piece plus a new positive piece that depends on the state of the link degrees of freedom. Nevertheless, this still has the downside that there is background entanglement, and hence it only models relatively limited code subspaces in which every area has a definite minimum value. In this note, we simply point out that a version of these constructions goes one step further: they can be background independent, with no background entanglement in the holographic map. This is advantageous because it allows tensor networks to model holographic maps for larger code subspaces. In addition to pointing this out, we address some subtleties involved in making it work. 
    more » « less
  3. Holographic tensor networks model AdS/CFT, but so far they have been limited by involving only systems that are very different from gravity. Unfortunately, we cannot straightforwardly discretize gravity to incorporate it, because that would break diffeomorphism invariance. In this note, we explore a resolution. In low dimensions gravity can be written as a topological gauge theory, which can be discretized without breaking gauge-invariance. However, new problems arise. Foremost, we now need a qualitatively new kind of “area operator,” which has no relation to the number of links along the cut and is instead topological. Secondly, the inclusion of matter becomes trickier. We successfully construct a tensor network both including matter and with this new type of area. Notably, while this area is still related to the entanglement in “edge mode” degrees of freedom, the edge modes are no longer bipartite entangled pairs. Instead they are highly multipartite. Along the way, we calculate the entropy of novel subalgebras in a particular topological gauge theory. We also show that the multipartite nature of the edge modes gives rise to non-commuting area operators, a property that other tensor networks do not exhibit. 
    more » « less
  4. A bstract Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI. 
    more » « less